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ABSTRACT

Context. Longitudinal oscillations in prominences are common phenomena on the Sun. These oscillations can be used to
infer the geometry and intensity of the filament magnetic field. Previous theoretical studies of longitudinal oscillations
made two simplifying assumptions: uniform gravity and semi-circular dips on the supporting flux tubes. However, the
gravity is not uniform and realistic dips are not semi-circular.
Aims. To understand the effects of including the nonuniform solar gravity on longitudinal oscillations, and explore the
validity of the pendulum model with different flux-tube geometries.
Methods. We first derive the equation describing the motion of the plasma along the flux tube including the effects of
nonuniform gravity, yielding corrections to the original pendulum model. We also compute the full numerical solutions
for the normal modes, and compare them with the new pendulum approximation.
Results. We have found that the nonuniform gravity introduces a significant modification in the pendulum model. We
have also found a cut-off period, i.e. the longitudinal oscillations cannot have a period longer than 167 minutes. In
addition, considering different tube geometries, the period depends almost exclusively on the radius of curvature at the
bottom of the dip.
Conclusions. We conclude that nonuniform gravity significantly modifies the pendulum model. These corrections are
important for prominence seismology, because the inferred values of the radius of curvature and minimum magnetic-field
strength differ substantially from those of the old model. However, we find that the corrected pendulum model is quite
robust and is still valid for non-circular dips.

Key words. Sun - Corona - Oscillations

1. Introduction

Solar prominences are very dynamical objects with many
kinds of motions, including oscillations and wave phenom-
ena. A common type of motion is large-amplitude oscil-
lations, in which a large portion of the filament oscillates
coherently with velocities above 10 km s−1. These oscilla-
tions have been reported since the first half of the twentieth
century (see the review of Arregui et al. 2018). Jing et al.
(2003) identified large-amplitude longitudinal oscillations
(LALOs) along prominence threads after a nearby ener-
getic event and many more LALOs have been reported
since then (see Luna et al. 2018). LALOs are excited by
eruptive flares near the filament (e.g., Jing et al. 2003;
Vršnak et al. 2007; Zhang et al. 2012), jets (Luna et al.
2014; Zhang et al. 2017), or coronal shocks (Shen et al.
2014). However, in many cases the trigger agent has not
been identified. LALO periods range from a few tens of min-
utes up to 160 minutes (Jing et al. 2006), but most of the
reported events have periods around one hour (Luna et al.
2018).

LALOs are important because they can be used to infer
the geometry and intensity of the filament magnetic field
(Luna & Karpen 2012; Zhang et al. 2012; Luna et al. 2014,
2017). Prominence magnetic structure is a long-standing

question, because we can only observe the photospheric
field directly and competing models have been proposed.
Because prominences reside in filament channels, which are
the sources of all major solar eruptions, understanding the
full coronal structure of these channels is crucial for re-
solving the fundamental physical mechanism(s) responsible
for eruptions and resulting space weather. One key conse-
quence of the LALO phenomenon is that the flux tubes
supporting and guiding the prominence plasma must con-
tain dips: concave upward regions in which Lorentz forces
balance the gravitational force. This constraint led to a sur-
prisingly accurate “pendulum” model for LALO motions,
and a new prominence-seismology technique for deriving
the dip radius of curvature and the minimum magnetic-
field strength in the dip (Luna & Karpen 2012; Luna et al.
2014).

Previous theoretical studies of longitudinal oscillations
made two simplifying assumptions that we explore further
in this paper: uniform gravity and semi-circular dips on
the supporting flux tubes. The first assumption is to con-
sider gravity as a uniform vector with a value of 274 m s−2,
which is vertical at all points of the studied volume. This ap-
proximation is widely used in theoretical studies when the
region studied is a small portion of the Sun. Examples of
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theoretical studies of longitudinal oscillations using uniform
gravity include Luna & Karpen (2012); Zhang et al. (2013);
Luna et al. (2016b); Terradas et al. (2016), and Liakh et al.
(2020). However, gravity is not uniform and depends on po-
sition. The gravity vector always points to the centre of the
Sun and its intensity decreases with distance. As we will
demonstrate in this paper, the spatial dependence of grav-
ity can strongly influence longitudinal oscillations of solar
prominences.

Second, previous models assumed semi-circular dips
of the field lines supporting the prominence threads
(Luna & Karpen 2012; Luna et al. 2012, 2016a). In this ge-
ometry, the radius of curvature along the dip, R0, is con-
stant. However, in a realistic situation, the curvature is not
likely to be constant. The radius of curvature depends on
the position along the dip R = R(s) with R0 = R(s = 0),
where s is the coordinate along the flux tube and s = 0 at
the bottom of the dip. In this situation, the relation between
the period and the radius of curvature is not immediately
obvious. Numerical simulations of longitudinal oscillations
in different flux-tube geometries (see e.g., Zhang et al. 2013;
Luna et al. 2016b; Liakh et al. 2021) have shown that the
pendulum model is still valid considering the radius of cur-
vature at the bottom of the dip, R0, or a curvature averaged
around the centre of the dip. In the present study, we in-
vestigate the robustness of the model and identify under
which conditions the pendulum model remains valid.

In this study, we consider that LALOs can be described
by linear magnetoacoustic-gravitational modes (Luna et al.
2012; Terradas et al. 2013). This allows us to study LA-
LOs analytically and find useful relationships that apply
to prominence seismology. However, the displacements and
velocities in LALOs are large and nonlinear effects may be
relevant. Nonlinear effects will be considered in a future
study. In this paper, we present the effects of including the
nonuniform solar gravity and then explore the validity of
the pendulum model with different flux-tube geometries. In
§2 we introduce the model that describes the equilibrium
and dynamics of a prominence thread with the nonuniform
gravity incorporated. In §3, the longitudinal oscillations in
a flux tube with semi-circular dip geometry are studied to
find the influence of curvature of the solar surface. In §4,
the study is extended to alternative flux-tube geometries to
investigate the validity of the pendulum model in these ge-
ometries. In §5 we discuss the influence of the solar-surface
curvature on the determination of the radius of curvature
of the dips and the minimum magnetic-field strength of the
prominences using seismology. Finally, in §6 the conclusions
of this investigation are summarised.

2. The model

Here we derive the equation that describes the motion of
the plasma velocity perturbations including the intrinsic
spatial variations of the solar gravity. We also show the dif-
ferent flux-tube geometries used to determine the influence
of the dip shape on the oscillations. Finally we consider the
equilibrium of the plasma along the flux tube. We assume
that the central part is filled with cool prominence plasma
representing a thread. The temperature increases sharply
at its sides, reaching a coronal temperature that applies to
the rest of the tube up to the footpoints.

2.1. Non-uniform gravity considerations

The solar gravity is given by the expression

g = −g0

(
R⊙

R⊙ + h

)2

r̂ , (1)

where g0 = 274 m s−2 is the acceleration at the solar sur-
face, h is the height with respect to the solar surface and r̂
is the radial unit vector pointing in the (minus) direction
of gravity. Most prominences are located in the low corona,
in which h ≪ R⊙. Thus Eq. (1) can be approximated by

g ≈ −g0 r̂ . (2)

This indicates that, for filaments in the low corona, the
main spatial variation of gravity is due to its changing di-
rection, not its intensity. The novelty of this work is to
introduce this intrinsic variation of the solar gravity with
position. For the study of longitudinal oscillations we are
interested into the projection of the gravity along the mag-
netic field of solar prominences, g‖. It is important to note
that, in the uniform gravity situation, g‖ changes along the
field line because the magnetic-field direction changes. How-
ever, in the nonuniform situation g‖ also changes with the
intrinsic changes of the direction of g given by Eq. (2).

2.2. The governing equation

The oscillations along the magnetic field in 2D configura-
tions were described by Goossens et al. (1985) as so-called
slow continuum modes, also denoted magnetoacoustic-
gravity modes (Terradas et al. 2013). In contrast to usual
MHD slow modes, both gas-pressure gradients and gravity
can be the restoring forces of these modes. We assume a low-
β, adiabatic plasma confined in uniform cross-section flux
tubes along a static magnetic field, with with no heating
or radiation terms, similar to Luna et al. (2012) (hereafter
called Paper I). The novelty is that we consider the intrin-
sic spatial variations of the solar gravity field using Eq. (2).
With these assumptions, from the ideal MHD equations we
recover our previous expression (Eq. (5) in Paper I),

∂2v

∂t2
− c2s

∂2v

∂s2
= γg‖

∂v

∂s
+ v

∂g‖

∂s
, (3)

where c2s = γ p/ρ is the sound speed and p and ρ are the
equilibrium gas pressure and density respectively. Note that
g‖ depends on the position s due to two contributions: the
change in the projection of the gravity along the field line,
and the intrinsic variation of the gravity field (Eq. (2)) that
is introduced in this work. Assuming an harmonic time de-
pendence, eiωt, the governing equation becomes

c2s
∂2v

∂s2
+ γg‖

∂v

∂s
+

(
ω2 +

∂g‖

∂s

)
v = 0 . (4)

Both terms g‖ and ∂g‖/∂s depend on the geometry of the
flux tube. For a semi-circular dip it is still possible to gain
some insight into the effect of the intrinsic spatial variation
of gravity (see §3) using an analytical approach. However,
it is difficult to find an analytic expression for both terms
for more general geometries, so we solve Eq. (4) numerically
for different shapes of the flux tubes.
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2.3. Flux tube models

In this work we explore the possible dependence of longi-
tudinal oscillations on the geometry of the field lines. Al-
though there are many possibilities, we consider three ge-
ometries for the flux tubes shown in Fig. 1. We have chosen
these cases because they are described by functions of a
few parameters that allow us to control the shape of the
flux tube. The first one (Model 1, Fig. 1(a)) consists of a
central semi-circular segment of radius R. On both sides,
there is a straight part representing the non-dipped part of
the tube. The semi-circular dip and the straight parts are
joined smoothly with a small arc with Rsmall = 10Mm that
is tangent to the central and the straight parts. We have
considered a range of R from 42 to 1000 Mm. The lengths
of the different parts of the piecewise flux tube are changed
to keep the total half-length of the tube to L1/2 = 100Mm.

Fig. 1. Flux tube geometries considered in this work: (a) semi-
circular dip, (b) elliptical dip, and (c) sinusoidal. The solid line is
the flux tube with the smallest radius of curvature. The dashed
line is a case with a radius of curvature intermediate between
the minimum and the maximum. In both Models 1 and 2 the
end points of the flux-tube components change in order to keep
the total length of the field line constant.

Model 2 consists of a central semi-elliptical segment
with major axis a = 55Mm parallel to x (Fig. 1(b)); minor
axis, b, is parallel to z and ranges from b = 3 to 55. The
tube also has two straight, horizontal segments as in Model
1. The dipped and straight parts are joined smoothly with
an arc of Rsmall = 8Mm. The length of the straight part is
varied to keep the half-length of the tube to L1/2 = 100Mm.
The radius of curvature of the dipped part depends on the
parameter b. At the bottom of the dip (i.e. the central po-
sition), the radius of curvature is

R0 =
a2

b
. (5)

With the parameters stated above for Model 2, R0 ranges
from 37 to 1000 Mm.

Model 3 is the most realistic because the footpoints are
anchored in the solar surface. The flux tube consists of a

combination of sinusoidal functions

z(x) = A0 cos

(
2πx

λ0

)
−A1

[
cos

(
2πx

λ1

)
+ 1

]n
, (6)

where λ0 = 399Mm, λ1 = λ0/2, n = 4, A0 = 20Mm and
A1 = 0.18− 1Mm. The z-position of the dip changes with
A1 as zdip = A0−A1 2

n and ranges from 4 to 17 Mm. With
the selected parameters the half-length of the tube is more
or less constant, L1/2 = 100Mm. The radius of curvature
at the bottom of the dip is given by

1

R0
=

2n+1nA1π
2

λ2
1

−
4A0π

2

λ2
0

. (7)

With the parameters considered in this work, Model 3 has
R0 = 55− 1000Mm.

The plasma equilibrium is stratified following the equa-
tion

dp

ds
= ρg‖ . (8)

The projected gravity, g‖, is given by Eq. (2) where the
effect of the change of direction is incorporated. However,
note that the governing Eq. (4) only depends on the sound
speed cs, which is proportional to the square root of the
temperature. To solve Eq. (4), we calculate cs from the
following temperature profile:

T (s) =

{
Tp , if |s| ≤ −l1/2

T+ + T− cos
[

π
ltr

(|s| − l1/2)
]

, if l1/2 < |s| ≤ l1/2 + ltr

Tc , if |s| ≤ l1/2 + ltr

(9)

where Tp = 6 × 103K, Tc = 106K, T+ = (Tc + Tp) /2,
and T− = (Tc − Tp) /2. Tp and Tc are the prominence and
corona equilibrium temperatures respectively. The assumed
half-length of the prominence thread is l1/2 = 5Mm and the
temperature changes smoothly from prominence to coronal
temperatures within a distance ltr = 1Mm at both ends
of the thread. We have tested different sizes for ltr and its
influence on the results is small.

3. Semi-circular geometry

The semi-circular dip geometry is the simplest, and has
been used in previous LALO research (e.g. Luna et al. 2012;
Ruderman & Luna 2016). Now we show how the intrinsic
variations of the solar gravity in this geometry introduce
corrections in the longitudinal oscillations.

3.1. Pendulum approximation

Fig. 2 shows the very simplified situation of a semi-circular
dip of radius R (thick solid curve). The center of curvature
of the dip segment is C.

Many prominences are located in the low corona, so
their heights above the surface, h, are small relative to R⊙.
The distance from the Sun’s centre, C⊙ to the bottom of
the dip, D, is d (C⊙, D) = R⊙ + h. However, h/R⊙ ≪ 1
so d (C⊙, D) ≈ R⊙. This is equivalent to considering that
the lower part of the dip is in contact with the surface as
shown in the sketch (Fig. 2). The gravity always points to
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R
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θ

α

~g

C

P
b

C⊙

D
b

Fig. 2. Sketch of a dip with circular shape (solid line) with
radius R. The red arrow shows the solar gravity on a point of
the tube (P) pointing to the center of the Sun, C⊙.

the solar center, C⊙. The relation between the angles θ and
α is

α(θ) = arctan

(
R sin θ

R+R⊙ − R cos θ

)
. (10)

Any fluid element with position P moves along the semi-
circular dip. We expect that the distance of any fluid ele-
ment from the central position is small in comparison with
the solar radius. Thus R sin θ ≪ R⊙. Therefore Eq. (10)
can be approximated as

α(θ) =
R

R⊙
θ . (11)

The gravity vector is g = −g0 (sinα, cosα), and the tan-
gent unitary vector along the field line is u = (cos θ, sin θ).
The scalar product of both vectors gives the projection of
the gravity along the field line,

g‖ = −g0 (sinα cos θ + cosα sin θ) = −g0 sin(θ + α) . (12)

With Eq. (11) we obtain an approximated expression for
the projected gravity

g‖ = −g0

(
1

R
+

1

R⊙

)
s , (13)

where we have used the identity θ = s/R. This equation
shows the dependence of g‖ on position s. On the right side
there are two contributions. The first is associated with the
change of magnetic-field direction along the line and there-
fore the change of projection of gravity. The second is asso-
ciated with the intrinsic variation of nonuniform gravity. In
an ideal situation with a straight horizontal tube, R = ∞,
the projection of gravity is not zero. This contrasts with

the uniform gravity case, R⊙ = ∞, where the projection is
zero. Introducing Eq. (13) into (4) yields

c2s
∂2v

∂s2
−γg0s

(
1

R
+

1

R⊙

)
∂v

∂s
+v

[
ω2 − g0

(
1

R
+

1

R⊙

)]
= 0 ,

(14)

In this modified equation of motion, the curvature of the
flux-tube dip and the curvature of the solar surface are in-
cluded, in contrast to Eq. (7) of Paper I. We define an
equivalent radius of curvature as

1

Req
≡

1

R
+

1

R⊙
. (15)

Substituting Eq. (15) into Eq. (4), we obtain a formally
equivalent expression to Eq. (9) from Paper I. Taking ad-
vantage of this, we find that the oscillation frequency in a
semi-circular dip is described by the equivalent to Eq. (25)
in Paper I, but now with Req instead of R, namely

ω2 ≈
g0
R

+
g0
R⊙

+ ω2
slow , (16)

where the first two terms are associated with the gravity
and the last ωslow is the slow-mode angular frequency as-
sociated with the gas-pressure gradient. In §3.2 we present
an approximation for this frequency. In prominences the
slow-mode term is negligible compared with the terms as-
sociated with the solar gravity remaining in the pendulum
model (see Paper I). The period is given by

P = 2π

√
Req

g0
= 2π

√√√√
1

g0

(
1
R + 1

R⊙

) . (17)

We define the period with uniform gravity as P0 =
2π

√
R/g0. Then

P =
P0√

1 + R
R⊙

. (18)

Hence the period is not affected by the solar curvature,
P ≈ P0, when R ≪ R⊙. Fig. 3 shows a plot of both periods,
P and P0, as functions of the period of the uniform-gravity
case, P0. For R << R⊙, both periods are almost identical as
expected. However, for increasing values of P0 the P curve
starts to diverge from the diagonal, becoming particularly
evident beyond 50 minutes. This figure shows that the solar-
surface curvature introduces a very small corrections for
typical LALO periods of around one hour, but the deviation
is significant for longer periods.

3.2. The existence of a maximum pendulum period

Prominence threads are supported against gravity by the
magnetic field. At the bottom of the dips, the Lorentz force
points into the vertical direction (i.e. ẑ in Cartesian coor-
dinates) such that

j ×B = −
1

2µ

∂B2

∂z
ẑ +

B2

µR
ẑ , (19)

where the first term on the right side is the magnetic pres-
sure gradient and the second term is the magnetic tension
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Fig. 3. Plot of the corrected pendulum period Eq. (18) as a
function of the old pendulum period P0 (solid line). The dot-
dashed line is plotted to show the diagonal where P = P0. We
see that the period deviates from the diagonal for periods larger
than 50 minutes.

(see Priest 2014). Although the dips are not necessarily
semi-circular and the radius of curvature depends on the
position, R is the curvature at the bottom of the dip in
Eq. (19). The tension term points upwards whereas the
magnetic pressure gradient points downwards. This implies

that ∂B2

∂z > 0, i.e., the field strength increases with z as
observed in the prominence core where the cool plasma is
located (e.g. Rust 1967; Leroy et al. 1983). If the field is
approximately force-free, these two terms are nearly bal-
anced. With the presence of the prominence mass, a small
excess of magnetic tension provides support against gravity.
This additional magnetic tension is given by a perturbation
of the magnetic configuration with respect to the force-free
configuration.

Eq. (19) shows that the support against gravity is given
by the curvature of the dipped part of the flux tubes. The
only possibility to have support is for positive values of the
radius of curvature, R > 0. For negative values of R, the
magnetic configuration is a loop. In this sense, to have a
prominence supported against gravity R ∈ (0,∞) where
R = ∞ corresponds to a straight line. By substituting
progressively increasing values of R into Eq. (17), we see
that the term 1/R tends to zero and the period, P , tends
asymptotically to 2π

√
R⊙/g0 and never exceeds this value

because when R approaches infinity there is no dip and
therefore no possibility of support against gravity. The cut-
off frequency corresponds to a period of

P⊙ = 2π

√
R⊙

g0
= 167minutes . (20)

Fig. 4 shows the period as a function of the radius of curva-
ture of the dip using the pendulum approximation (17). For
large values of R the period curve approaches P⊙, whereas
P0 increases monotonically with R.

Fig. 4. Plot of the corrected period (Eq. (17)) as a function of
R (solid line). For comparison, the dashed line shows the uncor-
rected pendulum period P0. The horizontal dotted line shows
the cut-off period P⊙ that P tends toward asymptotically.

3.3. Effect of gas pressure

The previous analysis is valid when the pendulum approxi-
mation is applicable. However, in general, the contribution
of the gas pressure should be considered. To find the nor-
mal modes of flux tube Model 1 (Fig. 1(a)), we solve nu-
merically Eq. (4). Line-tying conditions are imposed at the
footpoints, and the eigenvalue problem is solved by means
of a shooting technique. The numerical routine provides
the eigenfunction and the corresponding eigenfrequency of
the different modes allowed in the system (see further de-
tails in Terradas et al. 2013). Fig. 5 shows the periods of
the fundamental normal mode computed numerically, the
corrected pendulum period from Eq. (17), and the original
(uncorrected) pendulum period P0.

Fig. 5. Plot of the period of the fundamental-mode period found
by solving Eq. (4) for Model 1 (solid line). The dotted line is
the approximation given by Eq. (21), the dashed line shows the
corrected pendulum period from Eq. (17), and the dot-dashed
line is the uncorrected pendulum-model period P0.

All periods shown in the figure are similar for small R
and increase with radius of curvature. For relatively large
R values, however, the period P differs considerably from
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the corrected pendulum approximation because P is sig-
nificantly modified by the slow-mode contribution in this
model flux tube. We have also plotted the period given by
the approximation from Eq. (16). From this equation the
period is

1

P 2
=

g0
4π2 R

+
1

P 2
⊙

+
1

P 2
slow

. (21)

The period Pslow = 2π/ωslow is computed numerically by
solving Eq. (14) assuming g0 = 0 and finding the normal
mode. In this configuration the slow-mode period is inde-
pendent of the field-line geometry and equal to Pslow =
206minutes. We derive an approximate expression for Pslow

by modifying Eq. (26) from Paper I, namely

Pslow =
2 π

ωslow
∼ 2 π

√√√√ l̂
(
L1/2 − l̂

)
χ

c2sc
, (22)

where χ = Tc/Tp is the temperature ratio between the coro-
nal plasma and the prominence. csc is the sound speed at
the corona with temperature Tc. In Paper I the parameter l̂
equals the half-length of the prominence l1/2 because there
is a sharp transition between prominence and corona. Here,
in contrast, we have a smooth transition between both me-
dia given by Eq. (9). Using l̂ = l1/2 + 1/3 ltr approximates
very well the exact value of Pslow.

The period P containing all contributions agrees very
well with the exact numerical solution (dotted line in Fig.
5). From Eq. (21) we find that the period approaches the
following cut-off value as R → ∞:

Pcutoff =
P⊙Pslow√
P 2
slow + P 2

⊙

. (23)

For small values of Pslow, Pcutoff ≈ Pslow. In contrast,
for Pslow ≫ P⊙, Pcutoff → P⊙, and P < Pcutoff < P⊙.
In this configuration Pslow = 206minutes computed nu-
merically and thus Pcutoff = 130minutes. Eq. (21) shows
that the longitudinal oscillation period cannot be larger
than P⊙. It is interesting that Jing et al. (2006) found
an event with a period of 160 minutes, which is close to
P⊙. Therefore Pslow should be much larger than the cut-
off period in that event. Prominence oscillations with very
long (5-6 hours) and ultra-long (up to 30 hours) periods
have been reported (Foullon et al. 2004; Pouget et al. 2006;
Foullon et al. 2009). The existence of Pcutoff implies that
these very low frequency oscillations cannot be attributed
to the fundamental magnetoacoustic-gravity mode.

Longitudinal oscillations are governed by two possible
restoring forces: the projected gravity and the gas-pressure
gradients. In Paper I we found that the gravity dominates
when R ≪ Rlim in a situation of uniform gravity, where

Rlim = l̂
(
L1/2 − l̂

)
χ g0/c

2
sc depends on different parame-

ters of the flux tube and the thread. For the case of nonuni-
form gravity the relation becomes Req ≪ Rlim. Using Eq.
(15) we obtain a new condition on the radius of curvature

of the field lines as R ≪ R̂lim where

R̂lim =
Rlim

|1− Rlim

R⊙
|
. (24)

This is easier to fulfil than the equivalent condition for
uniform gravity. With the parameter values stated above,
Rlim ≈ 1100Mm, and the new maximum radius is R̂lim =
1925Mm.

Fig. 6(a) shows the eigenfunctions, v = v(s), obtained
by solving Eq. (4) numerically. We find a clear dependence
on the radius of curvature. For the most curved (smallest
R) dip in Model 1, the velocity has a wide plateau around
the center, extending across the entire dip. In contrast, for
an almost flat flux tube, the velocity is mainly concentrated
in the dense thread region at the bottom of the dip and the
shape of the eigenfunction is almost triangular. Ranging
from small to large values of R, the eigenfunction continu-
ously changes from a plateau to a triangular shape. We have
considered the same case without the effect of the solar sur-
face curvature, i.e. R⊙ = ∞. Fig. 6(a) shows the velocity
profile for the normal modes of both maximum and mini-
mum values of R0 with uniform gravity. The case with the
minimum R0 is very similar to the thick solid line. Similarly,
the case with the maximum R0 is almost identical to the
thick grey line. This indicates that there are no important
differences between the eigenfunctions in both situations.
Therefore, although the effect of the solar curvature mod-
ifies the oscillation period, it does not significantly affect
the velocity profile of the fundamental normal mode.

4. Alternative geometries

We compute the oscillations of the fundamental mode in
Models 2 and 3, in which the central segment assumes semi-
elliptical and sinusoidal shapes, respectively. We compare
the period predicted by the pendulum model with the pe-
riod corresponding to the radius of curvature at the center
of the dip, R0, given by Eqs. (5) and (7) for these models.

Fig. 7(a) shows the period as a function of the radius
of curvature at the bottom of the dip for the three models
considered in this work. The periods of the semi-circular
and semi-elliptical dip geometries are very similar. Model
2 has periods slightly smaller than the semi-circular case,
while the Model 3 periods are larger than for Model 1. In
both cases, the discrepancies are very small for small radii of
curvature and increase with R0. This figure shows that the
periods are roughly independent of the flux-tube geometry
for periods below 120 minutes.

Fig. 7(b) shows the difference between the actual
fundamental-mode period, P , and the corrected pendulum-
model period Ppendulum given by Eq. (17), as a function
of the period P . This difference is expressed in % as
100(Ppendulum − P )/P . The discrepancy with the pendu-
lum model is below 5% for periods less than 75 minutes,
and increases with the period. For Models 1 and 2, the dis-
crepancies are below 10% for periods under 95 minutes. In
contrast, for the sinusoidal geometry (Model 3), the differ-
ence is below 10% in all of the displayed domain. The dif-
ferences between the curves are not very significant, which
leads us to conclude that the range of validity of the pen-
dulum model is similar for all geometries.

The eigenfunctions v = v(s) for Models 2 and 3 are
shown in Figs. 6(b) and 6(c). The functions for the semi-
elliptical case are similar to those of the semi-circular ge-
ometry (Fig. 6(a)), with the maximum velocity located at
the tube center. For small R the function is very flat, but
there is no clear plateau as in Model 1. For flatter tubes
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Fig. 6. Plot of the eigenfunctions v = v(s) solutions of Eq.
(4) normalised to its maximum value for (a) circular, (b) el-
liptical, and (c) sinusoidal tube models (see Fig. 1). The thick
black line corresponds to the mode with the minimum radius of
curvature for each model (see §2.3), and the thick grey line cor-
responds to R0 = 1000Mm. The thin lines correspond to eigen-
functions with intermediate R0 values, smoothly transitioning
between both extreme functions. The two red dashed lines in
(a) are the normal modes for both maxima and minima of R0

for the uniform-gravity case.

with larger eccentricity, the motion is more and more con-
fined in the cool thread; the eigenfunction shape becomes
more triangular as the eccentricity increases. The function
has a small deviation at around |s| = 55Mm that is an ar-
tifact of the transition between the dip and the adjoining
straight horizontal tubes. The Model 3 eigenfunctions differ
substantially from those of the other models. For deep dips,
the eigenfunction has two maxima not located at the dip
bottom. For shallower dips, the function changes and the
two maxima approach one another as R decreases. Finally,
for the flattest tubes, the function resembles a triangle as
in previous models. As for Model 1 we have also computed
the eigenfunctions in the case of uniform gravity, and found
negligible differences with the non-uniform gravity case (see
red dashed lines).

Fig. 7. (a) Plot of the period as a function of the radius of
curvature at the bottom of the dip, R0, for the three geometries
considered: Model 1 (solid line), Model 2 (circles), and Model
3 (diamonds). (b) The percent discrepancy between the exact
period and that estimated by the corrected pendulum model
(Eq. (17)) as a function of the exact period.

5. Influence on prominence seismology

The prominence-seismology technique combines theoretical
modelling of prominence oscillations with observations to
infer hidden or hard to measure features of the promi-
nence structure. LALOs provide unique measurements of
the curvature of the dips in filament-channel flux tubes, and
a minimum value for the magnetic-field strength in those
dips (e.g., Luna & Karpen 2012). The relations between the
oscillation period and these two parameters have changed
from our earlier results, due to the corrections introduced
by the intrinsic spatial variation of the solar gravity. Assum-
ing that the pendulum model works well (i.e. Pslow → ∞),
Eq. (21) yields a new relation between the radius of curva-
ture and the period:

R =
g0 P

2

4π2

[
1−

(
P
P⊙

)2
] =

Rold

1−
(

P
P⊙

)2 , (25)
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where Rold = g0P
2/4π2 is the radius of curvature computed

with uniform gravity from Paper I. Fig. 8(a) shows the new
relation between R and P . In the same figure we have also
plotted Rold (dashed line). The corrections are increasingly
significant for periods longer than 60 minutes. For example,
for P = 80 minutes the radius of curvature is approximately
50 Mm larger than the uncorrected estimate.

The pendulum model also predicts a minimum value
for the magnetic field strength of the prominence (Paper
I), by assuming that the magnetic field supports the cool,
dense prominence threads. As shown in §3.2, the magnetic
tension is responsible for the support. Thus, according to
Eq. (19), the magnetic tension is larger than the weight of
the threads, such that

B2

µR
− ρ g ≥ 0 . (26)

Assuming that the slow-mode (gas-pressure gradient) con-
tribution is small, Eq. (25) yields the following corrected
relation

B ≥

√
µ ρ g2

4π2

P√
1−

(
P
P⊙

)2
=

Bold√
1−

(
P
P⊙

)2
, (27)

where Bold is defined by Eq. (7) in Paper I. The differ-
ence comes from the new term in the denominator. Fig.
8(b) compares the minimum magnetic-field strength in-
ferred from the corrected pendulum model with the values
obtained with the uncorrected version. The discrepancy in-
creases with the period; in fact, Eq. (27) shows that the
corrected field strength increases asymptotically as P ap-
proaches P⊙. For periods larger than P⊙ the equation is not
valid. However, for typical LALO periods (≤ 90 minutes;
Luna et al. 2018), the discrepancies are small. As we noted
previously (Luna et al. 2014), the density ρ introduces an
important uncertainty in Eq. (27) unless ρ is directly mea-
sured, because the range of possible values is two orders
of magnitude. Therefore the uncertainty in the magnetic-
field determination is much larger than the correction intro-
duced by the non-uniform gravity, for typical LALO peri-
ods (P ∼ 1 hour). For longer periods, however, the intrinsic
spatial variations of the gravity might introduce compara-
ble corrections.

6. Discussion and Conclusions

In this work, we show that the longitudinal oscillations
(magnetoacoustic-gravity modes) commonly observed in so-
lar prominence threads are influenced by the intrinsic spa-
tial variations of the solar gravity, which always points
radially toward the solar centre. This effect introduces a
correction in the equations governing the longitudinal os-
cillations, and modifies the pendulum-model approxima-
tion. This correction is significant for periods larger than
60 minutes and increases with increasing period. A new
radius of curvature is defined as the combination of the
dip radius of curvature and the solar-surface curvature.
The gravity correction has another interesting effect. In
order to support the prominence against gravity, the dips
of the field lines must have concave-upward curvature; the
limiting case is straight lines, with no curvature. Hence

Fig. 8. (a) Radius of curvature and (b) the minimum magnetic-
field strength vs period, for the old pendulum model (dashed
line) and the corrected expression including the curvature of the
solar surface (solid line) from Eq. (27). In this plot we have
considered ρ = 2× 10−10 kgm−3.

a cut-off period exists for longitudinal oscillations. Ob-
served longitudinal oscillations always have periods below
P < P⊙ = 167minutes, which can be tested observa-
tionally. The largest longitudinal period reported so far is
160 minutes (Jing et al. 2006), very close to the cut-off.
This confirms that the main restoring force is gravity, and
that the gas-pressure gradients make only small contribu-
tions to the oscillations. In addition, prominence oscilla-
tions with periods between 5 and 30 hours have been de-
tected (Pouget et al. 2006; Foullon et al. 2004, 2009). The
existence of the cut-off period excludes the possibility that
those oscillations are fundamental magnetoacoustic-gravity
modes.

The pendulum model approximation assumes that the
prominence dips are semi-circular, for simplicity. In this
work, we have studied the influence of the dip geometry
on magnetoacoustic-gravity modes by modelling flux tubes
with semi-circular, semi-elliptical, and sinusoidal dips. In
all the cases the period depends mainly on the radius of
curvature at the bottom of the dip and not on the exact
model considered. We found that the pendulum model is
quite robust and is still valid for non-circular dips.

We also studied the influence of the new modified pen-
dulum model on prominence seismology. The new model
relates the oscillation period and the minimum magnetic-
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field strength to the radius of curvature at the bottom of
the dips. We found that the magnetic-field correction is not
very large for typical observed longitudinal oscillation peri-
ods around one hour. However, for periods above 60 minutes
the correction is significant. Zhang et al. (2017) reported a
LALO event with a relatively long period of ≈99 minutes,
yielding a radius of curvature of 244 Mm and a field inten-
sity of 28 G under the original pendulum model. With the
corrections discussed in this paper, the estimated radius of
curvature is 376 Mm and the field intensity is 35 G, which
differ substantially from the Zhang et al. values. More re-
cently, Dai et al. (2021) also reported a LALO event with
an even longer period of ≈120 minutes, from which they es-
timated a radius of curvature of 355 Mm and a field strength
of 34 G with the old pendulum expression. With the cor-
rected pendulum model the radius of curvature is 734 Mm
and the field intensity is 49 G.

We conclude that the intrinsic spatial variations of the
solar gravity introduce important corrections to the pendu-
lum model. In addition, the corrected pendulum model pro-
vides a good estimate of the radius of curvature at the bot-
tom of the dips for any flux-tube geometry. This work has
been limited to modelling linear motions in the oscillations,
for which the center of mass of the cool prominence thread
moves negligibly around the bottom of the dip. However,
most longitudinal oscillations are classified as large ampli-
tude, where the prominence thread is advected far from
the dip center through regions with different curvatures. In
order to understand in-depth the relationship between the
period and the flux-tube geometry, this nonlinear behaviour
will be the subject of future research.
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